EPAL Scenario Testing System Requirements Specification

Version: 3.2

Document Author(s):

Neha Katira

Project Sponsor:

Mr. Thomas Caswell

IBM Tivoli Privacy Manager
Project Team:
(in alphabetical order of last name)
Ketan Desai

Chief Architect

Brian Elkins

Technical Writer

Richard Flynn

Project Manager

Neha Katira

SQA Expert

Priyhamvadha Thirukonda

GUI Specialist

I Introduction

Enterprise Privacy Authorization Language (EPAL) is a formal language for writing privacy policies to govern data handling practices in IT systems. EPAL policies exist in the form of XML files. EPAL is defined in an XML schema because XML allows the creation of precise, machine readable and portable documents.

Once an EPAL policy has been written, the policy authors may want to experiment with various “what-if” scenarios on the policy to ensure that the behavior expressed in the EPAL policy is what they expect.

A user creates a use scenario that is passed to the EPAL system. The EPAL system passes the use scenario to the Conformance Engine. Currently, scenarios are created individually and manually and are passed to the EPAL system through by a Java™ program. This system is cumbersome and requires significant technical expertise to use. The EPAL Scenario Testing System enables an end-user to create a scenario through a Graphical User Interface (GUI). A privacy scenario consists of the privacy policy, a vocabulary, user-category, data-category, action, and purpose. The GUI will allow the user to choose a specific policy file and will allow the user to test policies that only contain valid values. After the user creates the scenario, it is passed to the EPAL system. The EPAL system initializes the Conformance Engine with the scenario information. The Conformance Engine will select a rule from the policy file based on the input and issue either an allow/deny ruling or defer action until further information is provided. If the Conformance Engine requires further information, it calls back to the system for additional context. Context is defined as conditional requirements (i.e. is the subject over 16 years of age?) This request for context will be presented back to the user as a series of open-ended questions. Finally, the Conformance Engine will return an allow, deny, or not applicable ruling and the rule ID that generated the ruling. Depending on the specific scenario, the Conformance Engine may also return a series of obligations related to the use of this data. Obligations differ from conditions in that obligations are actions that must be taken after the data is used and are affirmative statements rather than questions.

The EPAL Scenario Testing System will present to the user a summary of the initial scenario information, any applicable conditional rules, the results of the ruling, and any obligations that apply to that scenario. The results, along with any errors encountered during the process, will be saved in a log file.

II Iteration 1

This section details the functional and non-functional requirements for iteration 1.

· Functional Requirements

The functional requirements for iteration 1 of the EPAL Scenario Testing System are described below. Each requirement has a unique identifier. Each functional requirement specifies the requirement, origin, priority, and a brief description of the requirement. The priority level ranges from 1 to 3, with 1 being the highest priority. The priority rankings were the recommendation of Mr. Tom Caswell, and thus implemented by the project team.

STS-FR1.1:

The system shall accept hard-coded values for the following fields of a test case scenario in the GUI:

1. User-category

2. Action

3. Data-category

4. Purpose

These inputs will be hard-coded as “Marketing”, “Read”, “Collected Information”, and “Direct Mail” for the field’s user-category, action, data-category, and purpose, respectively.

Description:

Once the user presses the “Run Scenario” button for the inputs above, the EPAL Scenario Testing System shall pass these values to the Conformance Engine. The Conformance Engine matches the user input with a policy rule and returns the ruling for the scenario input in the form of allow, deny, or not applicable.

Origin: Discussion with Mr. Tom Caswell during the JAD Session

Priority: 1

STS-FR1.2:
The system shall display limited results of the Conformance Engine for that scenario. Obligations and conditions will not be displayed at this point.

Description:

The results displayed to the user shall include the rule ID that matched the scenario and the ruling returned (allow, deny, or not applicable).

Origin: Project Description

Priority: 1

· Non-Functional Requirements

There were no non-functional requirements for iteration 1.

III Iteration 2

This section details the functional and non-functional requirements for iteration 2.

· Functional Requirements

The functional requirements for iteration 2 of the EPAL Scenario Testing System are described below. Each requirement has a unique identifier. Each functional requirement specifies the requirement, origin, priority, and a brief description of the requirement. The priority level ranges from 1 to 3, with 1 being the highest priority. The priority rankings were the recommendation of Mr. Tom Caswell, and thus implemented by the project team.

STS-FR2.1:
The system shall get the privacy policy file name from the user.

Description:

The user will input the privacy policy file name in the text box. The policy file has a reference to the vocabulary file. Using this policy file the scenario information is read from the vocabulary file to populate the input drop-down boxes as described in the STS-FR2.2 requirement.

Origin: Project Description

Priority: 1

STS-FR2.2:
The system shall populate the four input drop-down boxes by reading the vocabulary and policy files.

Description:

The EPAL Scenario Testing System shall read the policy file for the name of the vocabulary file. The EPAL Scenario Testing System shall then read the vocabulary file to obtain the user-category, data-category, action, and purpose information to populate the drop-down boxes.

Origin: Project Description

Priority: 1

STS-FR2.3:
The system shall ask for additional “context” (conditional rules) information from the user.

Description:

Once the input for testing a policy is selected, these values are passed to the Conformance Engine. The Conformance Engine will select a rule based on the input. Some rules have conditions associated with them. The Conformance Engine returns a Container object to the Communication Engine. The Communication Engine populates the attributes of the Container object by referencing the vocabulary file associated with the policy file. These attributes would address the conditions associated with the rule that matched. The Communication Engine then sends these attributes to the GUI to display to the user.

Origin: Meeting with Mr. Tom Caswell on 10/16/03

Priority: 1

STS-FR2.4:
The system shall display all the results of the Conformance Engine for that scenario, including obligations and conditions.

Description:

The results displayed to the user shall include the rule ID that matched the scenario, any additional inputs (attributes of the Container object), the ruling returned (allow, deny, or not applicable), and any obligations associated with that rule.

Origin: Project Description

Priority: 2
· Non-Functional Requirements

This section describes the non-functional requirements of the EPAL Scenario Testing System for iteration 2. The non-functional requirements have a unique id as listed below. Each non-functional requirement states the requirement, origin, priority, and a brief description of the requirement. The priority levels vary from 1 to 3, with 1 being the highest priority. The priority rankings were the recommendation of Mr. Tom Caswell, and thus implemented by the project team.

STS-NF2.1:

The system shall use the color and background of the EPAL Editor created by the project team in spring 2003.

Description:

The Human Factors team at IBM approved the appearance of the EPAL Editor. This requirement will ensure that the standardized color and background of the EPAL Editor are applied to the EPAL Scenario Testing System.

Origin: Discussion with Mr. Thomas Caswell during the JAD Session

Priority: 2

IV Iteration 3

This section details the functional and non-functional requirements for iteration 3.

· Functional Requirements

The functional requirements for iteration 3 of the EPAL Scenario Testing System are described below. Each requirement has a unique identifier. Each functional requirement specifies the requirement, origin, priority, and a brief description of the requirement. The priority level ranges from 1 to 3, with 1 being the highest priority. The priority rankings were the recommendation of Mr. Tom Caswell, and thus implemented by the project team.

STS-FR3.1:
The system shall log the events of the scenario to a file.

Description:

For every scenario run by the user, the system shall log all the events to a file. The events include the user input for the scenario (i.e. the user-category, data-category, action, and purpose), the results of the scenario (i.e. rule id, ruling, and obligations), and any additional context information needed for the scenario, namely the containers and conditional values.

Origin: Project Description

Priority: 1
· Non-Functional Requirements

There were no non-functional requirements for iteration 3.

V Constraints

 The following section describes the constraints that shape the requirements of the EPAL

 Scenario Testing System. These constraints shall be applied to the entire EPAL Scenario

 Testing System.

STS-C1:

The system shall be compatible with JDK 1.3.1.

Description: The code of the EPAL Scenario Testing System shall be compatible with JDK 1.3.1. Newer versions can be used only if the classes and methods are compatible to JDK 1.3.1.

Origin: Discussion with Mr. Thomas Caswell during the JAD Session
Priority: 1

STS-C2:

Code for the EPAL Scenario Testing System shall be documented using standard JAVADOC procedures.

Description: The source code shall be commented. This will facilitate future maintenance and extension to the code.

Origin: Discussion with Mr. Thomas Caswell during the JAD Session

Priority: 2

STS-C3:

Model View Controller (MVC) Separation shall be provided.

Description:

The EPAL Scenario Testing System shall follow the MVC paradigm. This MVC paradigm will provide flexibility to separate the GUI and the Conformance Engine to allow for reuse of any of the components with other products and other user interfaces.

Origin: Discussion with Mr. Thomas Caswell during the JAD Session

Priority: 1

VI Security and Privacy Requirements

The EPAL Scenario Testing System will be a stand-alone application. Therefore, there are no specific security requirements. The EPAL Scenario Testing System does not require any personally identifiable information (PII) from the user. The Scenario Testing System application and associated policy files and log files will be stored in some location which can be accessed by the user only after logging in to his computer with a valid user id and password..

VII Requirements Traceability Matrix

Table1: Requirements Traceability Matrix

Is dependent on requirement?

Req

GUI
Interface to Conformance Engine
STS-FR1.1
STS-FR1.2
STS-FR2.1
STS-FR2.2
STS-FR2.3
STS-FR2.4
STS-FR3.1

GUI

Interface to Conformance Engine
X

STS-FR1.1
X

STS-FR1.2
X
X

STS-FR2.1
X
X

STS-FR2.2
X
X

X

STS-FR2.3
X
X

X
X

STS-FR2.4
X
X

X
X
X

STS-FR3.1
X
X

The Requirements Traceability Matrix as shown in Table 1 above has an X in a cell if that requirement (in the row) is dependent on the requirement (in the column). For example, the Interface to the Conformance Engine (in the row) is dependent on the GUI to instantiate the Interface to the Conformance Engine.

VIII Development and Target Platforms

All the development shall be done on Windows using Java. Java Swing classes shall be used for the GUI development. The system will be implemented using JDK 1.3.1.

IX Document Revision History

Version
3.1

Name(s)
Brian Elkins

Date
November 9, 2003

Change Description
Updated document based on Iteration 2 teacher comments. Added Iteration 3 requirements.

Version
3.2

Name(s)
Neha Katira

Date
November 9, 2003

Change Description
Formatting and grammatical changes

